Не работает блок питания пк. Компьютер не включается

РЕМОНТ БП ATX

Возможно некоторые заметят, что в большинстве случаев БП ATX проще и дешевле выкинуть и купить новый за 20 – 30уе, а не ремонтировать испорченный, но это будет верно лишь в некоторых случаях. Очень часто сгорает копеечная деталь на пол доллара, и найти и заменить её дело пары часов. Недавно сидел и смотрел по компьютеру фильм «Ипман» и чувствую – воняет палёным. Сначала думал что-то на кухне пригорело, но когда комп вырубился на самом интересном месте понял – это был БП. Сомнения окончательно рассеялись лишь только прикоснулся к задней стенке БП ATX – сковородка!

Раскручиваю, отсоединяю, вытаскиваю и вижу слегка обуглившийся участок платы у мощных 30-ти амперных выпрямительных диодов. Прозвонка подтвердила – вылетел один из них. Иду на базар, покупаю новый, впаиваю, включаю – всё работает. Только кулер не крутится, настолько пылью забился, от того и диоды перегрелись. Так что делаем два вывода: Надо чистить вентиляторы и компьютерный БП таки имеет в некоторых случаях смысл ремонтировать.

Во время ремонта следует включать блок питания ATX в сеть 220В через разделительный трансформатор изготовленный из двух ТС-180 (ТС-160). Питание на сеть первого, анодную обмотку на аналогичную анодную второго и сеть второго на БП. Мощность такого источника вполне достаточна для безопасного ремонта. популярных моделей БП АТХ и с описанием принципа действия блоков питания смотрим на сайте.

Итак, сгорел БП ATX, а начит приступаем к ремонту. Прежде всего конечно проверяем внутренний плавкий предохранитель. Открыв корпус, его можно заменить, но в большинстве случаев замена ничего не даст - если не устранена основная неисправность, перегорит и новый предохранитель. Перегорание предохранителя может свидетельствовать о неисправности диодов входного выпрямителя, ключевых транзисторов или схемы дежурного режима.

Высоковольтные конденсаторы. Для проверки их надо выпаивать из платы, чтоб испытать на ток утечки. Конденсатор проверяют мультиметром в режиме омметра. Сопротивление должно плавно увеличиваться. Скорость увеличения сопротивления зависит от ёмкости конденсатора. Чем больше ёмкость, тем медленнее увеличивается сопротивление. Но можно не выпаивая их, проверить на короткое замыкание. Неэлектролиты особого смысла проверять нет – эти конденсаторы очень редко выходят из строя.

Трансформатор нужно проверить на сопротивление обмоток и на пробой между ними. Проверка всех диодов. Падение напряжения должно быть от 0,05 до 0,7 В. Если падение – ноль, выпаиваем диод одной ногой и проверяем. Если всё равно ноль, значит он пробит.

Осматриваем БП, обращая внимание на поврежденные, потемневшие или сгоревшие детали. Проверяем сопротивление термистора, оно должно быть не более 10 Ом. Ключевые транзисторы проверяем мультиметром по падению напряжения на переходах б-к и б-э в обоих направлениях. В исправном биполярном транзисторе переходы должны звониться как диоды. Силовые транзисторы, типа D209 можно заменить на MJE13009. Выходные диодные сборки по каналам +3.3В, +5В заменимы на STPS4045, MBR20100. Проверяем выходные электролитические конденсаторы. Измеряем выходное сопротивление между общим проводом и выходами блока питания +5В и +12В. должно быть в районе 100-30 Ом, по каналу +3.3В - около 5-20 Ом.


Берём лампочку накаливания на 100 Ватт и впаиваем в разрыв сетевого провода. Если при включении БП в сеть лампа вспыхивает и гаснет - все нормально, а если при включении лампа зажигается и не гаснет – где-то короткое замыкание.

Проверить схему дежурного режима. Измеряем напряжение дежурного источника, нагруженного на лампочку 6В 1А. Проверка микросхемы TL494. На выводе 12 у неё должно быть 12-30V. Если нет проблема с дежурным источником, если есть - проверяем напряжение на выводе 14 TL494 - должно быть +5В. Проверяем напряжение на выводе 4 при замыкании PS ON на землю. До замыкания должно быть порядка 3-5В, после – 0В. Отсутствует? Меняем микросхему. В качестве нагрузки БП следует использовать мощные галогенные лампы на 12В. Между выводом PS ON и GND подключаем кнопку для включения блока питания.

Источник питания ATX имеет встроенные регулировки напряжения, которое калибруется и устанавливается при изготовлении. Через какое-то время параметры некоторых узлов могут измениться, тогда изменятся и выходные напряжения. Если дело обстоит именно так, можно настройкой снова установить правильные значения напряжений. Надо найти для каждого напряжения свой подстроечный резистор, а затем измерять выходное напряжение, по очереди изменяя положение органов управления каждого подстроечного устройства, пока не увидите изменение напряжения. Если вы изменяете положение органов управления подстроечного устройства, а наблюдаемое вами напряжение не изменяется, восстановите положение в исходную позицию.

по ремонту компьютерных блоков питания.

Если блок питания вашего компьютера вышел из строя, не спешите расстраиваться, как показывает практика, в большинстве случаев ремонт может быть выполнен своими силами. Прежде чем перейти непосредственно к методике, рассмотрим структурную схему БП и приведем перечень возможных неисправностей, это существенно упростит задачу.

Структурная схема

На рисунке показано изображение структурной схемы типичной для импульсных БП системных блоков.

Указанные обозначения:

  • А – блок сетевого фильтра;
  • В – выпрямитель низкочастотного типа со сглаживающим фильтром;
  • С – каскад вспомогательного преобразователя;
  • D – выпрямитель;
  • E – блок управления;
  • F – ШИМ-контроллер;
  • G – каскад основного преобразователя;
  • H – выпрямитель высокочастотного типа, снабженный сглаживающим фильтром;
  • J – система охлаждения БП (вентилятор);
  • L – блок контроля выходных напряжений;
  • К – защита от перегрузки.
  • +5_SB – дежурный режим питания;
  • P.G. – информационный сигнал, иногда обозначается как PWR_OK (необходим для старта материнской платы);
  • PS_On – сигнал управляющий запуском БП.

Распиновка основного коннектора БП

Для проведения ремонта нам также понадобится знать распиновку главного штекера БП (main power connector), она показана ниже.


Для запуска блока питания необходимо провод зеленого цвета (PS_ON#) соединить с любым нулевым черного цвета. Сделать это можно при помощи обычной перемычки. Заметим, что у некоторых устройств цветовая маркировка может отличаться от стандартной, как правило, этим грешат неизвестные производители из поднебесной.

Нагрузка на БП

Необходимо предупредить, что без нагрузки существенно сокращает их срок службы и даже может стать причиной поломки. Поэтому мы рекомендуем собрать простой блок нагрузок, его схема показана на рисунке.


Схему желательно собирать на резисторах марки ПЭВ-10, их номиналы: R1 – 10 Ом, R2 и R3 – 3,3 Ом, R4 и R5 – 1,2 Ом. Охлаждение для сопротивлений можно выполнить из алюминиевого швеллера.

Подключать в качестве нагрузки при диагностике материнскую плату или, как советуют некоторые «умельцы», HDD и СD привод нежелательно, поскольку неисправный БП может вывести их из строя.

Перечень возможных неисправностей

Перечислим наиболее распространенные неисправности, характерные для импульсных БП системных блоков:

  • перегорает сетевой предохранитель;
  • +5_SB (дежурное напряжение) отсутствует, а также больше или меньше допустимого;
  • напряжения на выходе блока питания (+12 В, +5 В, 3,3 В) не соответствуют норме или отсутствуют;
  • нет сигнала P.G. (PW_OK);
  • БП не включается дистанционно;
  • не вращается вентилятор охлаждения.

Методика проверки (инструкция)

После того, как блок питания снят с системного блока и разобран, в первую очередь, необходимо произвести осмотр на предмет обнаружения поврежденный элементов (потемнение, изменившийся цвет, нарушение целостности). Заметим, что в большинстве случаев замена сгоревшей детали не решит проблему, потребуется проверка обвязки.


Если таковы не обнаружены, переходим к следующему алгоритму действий:

  • проверяем предохранитель. Не стоит доверять визуальному осмотру, а лучше использовать мультиметр в режиме прозвонки. Причиной, по которой выгорел предохранитель, может быть пробой диодного моста, ключевого транзистора или неисправность блока, отвечающего за дежурный режим;

  • проверка дискового термистора. Его сопротивление не должно превышать 10Ом, если он неисправен, ставить вместо него перемычку крайне не советуем. Импульсный ток, возникающий в процессе заряда конденсаторов, установленных на входе, может стать причиной пробоя диодного моста;

  • тестируем диоды или диодный мост на выходном выпрямителе, в них не должно быть обрыва и КЗ. При обнаружении неисправности следует подвергнуть проверке установленные на входе конденсаторы и ключевые транзисторы. Поступившее на них в результате пробоя моста переменное напряжение, с большой вероятностью, вывело эти радиодетали из строя;

  • проверка входных конденсаторов электролитического типа начинается с осмотра. Геометрия корпуса этих деталей не должна быть нарушена. После этого измеряется емкость. Нормальным считается, если она не меньше заявленной, а расхождение между двумя конденсаторами в пределах 5%. Также проверке должны быть подвергнуты запаянные параллельно входным электролитам и выравнивающие сопротивления;

  • тестирование ключевых (силовых) транзисторов. При помощи мультиметра проверяем переходы база-эмиттер и база-коллектор (методика такая же, как при ).

Если найден неисправный транзистор, то прежде, чем впаивать новый, необходимо протестировать всю его обвязку, состоящую из диодов, низкоомных сопротивлений и электролитических конденсаторов. Последние рекомендуем поменять на новые, у которых большая емкость. Хороший результат дает шунтирование электролитов при помощи керамических конденсаторов 0,1 мкФ;

  • Проверка выходных диодных сборок (диоды шоттки) при помощи мультиметра, как показывает практика, наиболее характерная для них неисправность – КЗ;

  • проверка выходных конденсаторов электролитического типа. Как правило, их неисправность может быть обнаружена путем визуального осмотра. Она проявляется в виде изменения геометрии корпуса радиодетали, а также следов от протекания электролита.

Не редки случаи, когда внешне нормальный конденсатор при проверке оказывается негодным. Поэтому лучше их протестировать мультиметром, у которого есть функция измерения емкости, или использовать для этого специальный прибор.

Видео: правильный ремонт блока питания ATX.
https://www.youtube.com/watch?v=AAMU8R36qyE

Заметим, что нерабочие выходные конденсаторы – самая распространенная неисправность в компьютерных блоках питания. В 80% случаев после их замены работоспособность БП восстанавливается;


  • проводится измерение сопротивления между выходами и нулем, для +5, +12, -5 и -12 вольт этот показатель должен быть в пределах, от 100 до 250 Ом, а для +3,3 В в диапазоне 5-15 Ом.

Доработка БП

В заключение дадим несколько советов по доработке БП, что позволит сделать его работу более стабильной:

  • во многих недорогих блоках производители устанавливают выпрямительные диоды на два ампера, их следует заменить более мощными (4-8 ампер);
  • диоды шоттки на каналах +5 и +3,3 вольт также можно поставить помощнее, но при этом у них должно быть допустимое напряжение, такое же или большее;
  • выходные электролитические конденсаторы желательно поменять на новые с емкостью 2200-3300 мкФ и номинальным напряжением не менее 25 вольт;
  • бывает, что на канал +12 вольт вместо диодной сборки устанавливаются спаянные между собой диоды, их желательно заменить на диод шоттки MBR20100 или аналогичный;
  • если в обвязке ключевых транзисторов установлены емкости 1 мкФ, замените их на 4,7-10 мкФ, рассчитанные под напряжение 50 вольт.

Такая незначительная доработка позволит существенно продлить срок службы компьютерного блока питания.

Немного о применении и устройстве ИБП

На сайте уже была опубликована статья , в которой рассказано об устройстве ИБП. Эту тему можно несколько дополнить небольшим рассказом о ремонте. Под аббревиатурой ИБП достаточно часто упоминается . Чтобы не было разночтений, условимся, что в данной статье это Импульсный Блок Питания.

Практически все импульсные блоки питания, применяющиеся в электронной аппаратуре построены по двум функциональным схемам.

Рис.1. Функциональные схемы импульсных блоков питания

По полумостовой схеме выполняются, как правило, достаточно мощные блоки питания, например компьютерные. По двухтактной схеме изготавливаются также блоки питания мощных эстрадных УМЗЧ и сварочных аппаратов.

Кому доводилось ремонтировать усилители мощностью 400 и более ватт, прекрасно знает, какой у них вес. Речь идет, естественно, об УМЗЧ с традиционным трансформаторным блоком питания. ИБП телевизоров, мониторов, DVD-проигрывателей чаще всего делаются по схеме с однотактным выходным каскадом.

Хотя реально существуют и другие разновидности выходных каскадов, которые показаны на рисунке 2.

Рис.2. Выходные каскады импульсных блоков питания

Здесь показаны только силовые ключи и первичная обмотка силового трансформатора.

Если внимательно посмотреть на рисунок 1, нетрудно заметить, что всю схему можно разделить на две части — первичную и вторичную. Первичная часть содержит сетевой фильтр, выпрямитель напряжения сети, силовые ключи и силовой трансформатор. Эта часть гальванически связана с сетью переменного тока.

Кроме силового трансформатора в импульсных блоках питания применяются еще развязывающие трансформаторы, через которые управляющие импульсы ШИМ - контроллера подаются на затворы (базы) силовых транзисторов. Таким способом обеспечивается гальваническая развязка от сети вторичных цепей. В более современных схемах эта развязка осуществляется при помощи оптронов.

Вторичные цепи гальванически отвязаны от сети при помощи силового трансформатора: напряжение с вторичных обмоток подается на выпрямитель, и далее в нагрузку. От вторичных цепей питаются также схемы стабилизации напряжения и защиты.

Очень простые импульсные блоки питания

Выполняются на базе автогенератора, когда задающий ШИМ контроллер отсутствует. В качестве примера такого ИБП можно привести схему электронного трансформатора Taschibra.

Рис.3. Электронный трансформатор Taschibra

Подобные электронные трансформаторы выпускаются и другими фирмами. Их основное назначение — . Отличительная особенность подобной схемы — простота и малое количество деталей. Недостатком можно считать то, что без нагрузки эта схема просто не запускается, выходное напряжение нестабильно и имеет высокий уровень пульсаций. Но лампочки все-таки светят! При этом вторичная цепь полностью отвязана от питающей сети.

Совершенно очевидно, что ремонт такого блока питания сводится к замене транзисторов, резисторов R4, R5, иногда VDS1 и резистора R1, выполняющего роль предохранителя. Просто нечему больше в этой схеме сгореть. При небольшой цене электронных трансформаторов чаще просто покупается новый, а ремонт делается, что называется, «из любви к искусству».

Сначала техника безопасности

Коль скоро имеется такое весьма неприятное соседство первичной и вторичной цепей, которые в процессе ремонта обязательно, пусть, даже случайно, придется пощупать руками, то следует напомнить некоторые правила техники безопасности.

Прикасаться к включенному источнику можно только одной рукой, ни в коем случае не сразу обеими. Это известно каждому, кто работает с электрическими установками. Но лучше не касаться вовсе, или, только после отключения от сети путем выдергивания вилки из розетки. Также не следует на включенном источнике что-то паять или просто крутить отверткой.

В целях обеспечения электробезопасности на платах блоков питания «опасная» первичная сторона платы обводится достаточно широкой полосой или заштриховывается тонкими полосками краски, чаще белого цвета. Это предупреждение о том, что трогать руками эту часть платы опасно.

Даже выключенный импульсный блок питания можно касаться руками только через некоторое время, не менее 2…3 минут после выключения: на высоковольтных конденсаторах заряд сохраняется достаточно долго, хотя в любом нормальном блоке питания параллельно конденсаторам установлены разрядные резисторы. Помните, как в школе предлагали друг другу заряженный конденсатор! Убить, конечно, не убьет, но удар получается достаточно чувствительный.

Но самое страшное даже не в этом: ну, подумаешь, чуть щипнуло. Если сразу после выключения прозвонить электролитический конденсатор мультиметром, то вполне возможно пойти в магазин за новым.

Когда такое измерение предвидится, конденсатор нужно разрядить, хотя бы пинцетом. Но лучше это сделать с помощью резистора сопротивлением в несколько десятков КОм. В противном случае разряд сопровождается кучей искр и достаточно громким щелчком, да и для конденсатора такое КЗ не очень полезно.

И все же, при ремонте приходится касаться включенного импульсного блока питания, хотя бы для проведения каких-то измерений. В этом случае максимально обезопасить себя любимого от поражения электричеством поможет развязывающий трансформатор, часто его называют трансформатор безопасности. Как его изготовить, можно прочитать в статье .

Если же в двух словах, то это трансформатор с двумя обмотками на 220В, мощностью 100…200Вт (зависит от мощности ремонтируемого ИБП), электрическая схема показана на рисунке 4.

Рис.4. Трансформатор безопасности

Левая по схеме обмотка включается в сеть, к правой обмотке через лампочку подключается неисправный импульсный блок питания. Самое главное при таком включении это то, что ОДНОЙ рукой прикасаться к любому концу вторичной обмотки можно безбоязненно, равно как и ко всем элементом первичной цепи блока питания.

О роли лампочки и ее мощности

Чаще всего ремонт импульсного блока питания выполняется без развязывающего трансформатора, но в качестве дополнительной меры безопасности включение блока производится через лампочку мощностью 60…150Вт. По поведению лампочки можно, в общем, судить о состоянии блока питания. Конечно, такое включение не обеспечит гальванической развязки от сети, трогать руками не рекомендуется, но от дыма и взрывов вполне может защитить.

Если при включении в сеть лампочка зажигается в полный накал, то следует искать неисправность в первичной цепи. Как правило, это пробитый силовой транзистор или выпрямительный мост. При нормальной работе блока питания лампочка сначала вспыхивает достаточно ярко (), а потом нить накала продолжает слабо светиться.

Насчет этой лампочки существует несколько мнений. Кто-то говорит, что она не помогает избавиться от непредвиденных ситуаций, а кто-то считает, что намного снижается риск спалить только что запаянный транзистор. Будем придерживаться этой точки зрения, и лампочку для ремонта использовать.

О разборных и неразборных корпусах

Чаще всего импульсные блоки питания выполняются в корпусах. Достаточно вспомнить компьютерные блоки питания, различные адаптеры, включаемые в розетку, зарядные устройства для ноутбуков, мобильных телефонов и т.п.

В случае компьютерных блоков питания все достаточно просто. Из металлического корпуса выкручиваются несколько винтиков, снимается металлическая же крышка и, пожалуйста, вся плата с деталями уже в руках.

Если корпус пластмассовый, то следует поискать на обратной стороне, где находится сетевая вилка, маленькие шурупчики. Тогда все просто и понятно, отвернул и снял крышку. В этом случае можно сказать, что просто повезло.

Но в последнее время все идет по пути упрощения и удешевления конструкций, и половинки пластмассового корпуса просто склеиваются, причем достаточно прочно. Один товарищ рассказывал, как возил в какую-то мастерскую подобный блок. На вопрос, как же его разобрать мастера сказали: «Ты, что не русский?». После чего взяли молоток и быстренько раскололи корпус на две половинки.

На самом деле это единственный способ для разборки пластиковых клееных корпусов. Вот только колотить надо аккуратно и не очень фанатично: под действием ударов по корпусу могут оборваться дорожки, ведущие к массивным деталям, например, трансформаторам или дросселям.

Помогает также вставленный в шов нож, и легкое постукивание по нему все тем же молотком. Правда, после сборки остаются следы этого вмешательства. Но пусть уж будут незначительные следы на корпусе, зато не придется покупать новый блок.

Как найти схему

Если в прежние времена практически ко всем устройствам отечественного производства прилагались принципиальные электрические схемы, то современные иностранные производители электроники делиться своими секретами не хотят. Вся электронная техника комплектуется лишь руководством пользователя, где показывается, какие надо нажимать кнопки. Принципиальные схемы к пользовательскому руководству не прилагаются.

Предполагается, что устройство будет работать вечно или ремонт будет производиться в авторизованных сервисных центрах, где имеются руководства по ремонту, именуемые сервис мануалами (service manual). Сервисные центры не имеют права делиться со всеми желающими этой документацией, но, хвала интернету, на многие устройства эти сервис мануалы находить удается. Иногда это может получиться безвозмездно, то есть, даром, а иногда нужные сведения можно получить за незначительную сумму.

Но даже если нужную схему найти не удалось, отчаиваться не стоит, тем более при ремонте блоков питания. Практически все становится понятно при внимательном рассмотрении платы. Вот этот мощный транзистор — не что иное как выходной ключ, а эта микросхема — ШИМ контроллер.

В некоторых контроллерах мощный выходной транзистор «спрятан» внутри микросхемы. Если эти детали достаточно габаритные, то на них имеется полная маркировка, по которой можно найти техническую документацию (data sheet) микросхемы, транзистора, диода или стабилитрона. Именно эти детали составляют основу импульсных блоков питания.

Несколько сложнее найти даташиты на малогабаритные компоненты SMD. Полная маркировка на маленьком корпусе не помещается, вместо нее на корпусе ставится кодовое обозначение из нескольких (три, четыре) букв и цифр. По этому коду с помощью таблиц или специальных программ, добытых опять-таки в интернете, удается, правда не всегда, найти справочные данные неведомого элемента.

Измерительные приборы и инструмент

Для ремонта импульсных блоков питания потребуется тот инструмент, который должен быть у каждого радиолюбителя. В первую очередь это несколько отверток, кусачки-бокорезы, пинцет, иногда пассатижи и даже упомянутый выше молоток. Это для слесарно-монтажных работ.

Для паяльных работ, конечно же, понадобится паяльник, лучше несколько, различной мощности и габаритов. Вполне подойдет обычный паяльник мощностью 25…40Вт, но лучше, если это будет современный паяльник с терморегулятором и стабилизацией температуры.

Для отпаивания многовыводных деталей хорошо иметь под руками если не супердорогую , то хотя бы простенький недорогой паяльный фен. Это позволит без особых усилий и разрушения печатных плат выпаивать многовыводные детали.

Для измерения напряжений, сопротивлений и несколько реже токов понадобится цифровой мультиметр, пусть даже не очень дорогой, или старый добрый стрелочный тестер. О том, что стрелочный прибор еще рано списывать со счетов, какие он дает дополнительные возможности, которых нет у современных цифровых мультиметров, можно прочитать в статье .

Неоценимую помощь в ремонте импульсных блоков питания может оказать . Тут тоже вполне возможно воспользоваться стареньким, даже не очень широкополосным электронно-лучевым осциллографом. Если конечно есть возможность приобрести современный цифровой осциллограф, то это еще лучше. Но, как показывает практика, при ремонте импульсных блоков питания можно обойтись и без осциллографа.

Собственно при ремонте возможны два исхода: либо отремонтировать, либо сделать еще хуже. Тут уместно вспомнить закон Хорнера: «Опыт растет прямо пропорционально числу выведенной из строя аппаратуры». И хотя закон этот содержит изрядную долю юмора, в практике ремонта дела обстоят именно таким образом. Особенно в начале пути.

Поиск неисправностей

Импульсные блоки питания выходят из строя намного чаще, чем другие узлы электронной аппаратуры. В первую очередь сказывается то, что присутствует высокое сетевое напряжение, которое после выпрямления и фильтрации становится еще выше. Поэтому силовые ключи и весь инверторный каскад работают в очень тяжелом режиме, как электрическом, так и тепловом. Чаще всего неисправности кроются именно в первичной цепи.

Неисправности можно разделить на два типа. В первом случае отказ импульсного блока питания сопровождается дымом, взрывами, разрушением и обугливанием деталей, иногда дорожек печатной платы.

Казалось бы, что вариант простейший, достаточно только поменять сгоревшие детали, восстановить дорожки, и все заработает. Но при попытке определить тип микросхемы или транзистора выясняется, что вместе с корпусом улетучилась и маркировка детали. Что тут было, без схемы, которой чаще под рукой нет, узнать невозможно. Иногда ремонт на этой стадии и заканчивается.

Второй тип неисправности тихий, как говорил Лёлик, без шума и пыли. Просто бесследно пропали выходные напряжения. Если этот импульсный блок питания представляет собой простой сетевой адаптер вроде зарядника для сотового или ноутбука, то в первую очередь следует проверить исправность выходного шнура.

Чаще всего происходит обрыв либо около выходного разъема, либо у выхода из корпуса. Если блок включается в сеть при помощи шнура с вилкой, то в первую очередь следует убедиться в его исправности.

После проверки этих простейших цепей уже можно лезть в дебри. В качестве этих дебрей возьмем схему блока питания 19-дюймового монитора LG_flatron_L1919s. Собственно неисправность была достаточно простой: вчера включался, а сегодня не включается.

При кажущейся серьезности устройства — как-никак монитор, схема блока питания достаточно проста и наглядна.

После вскрытия монитора было обнаружено несколько вздутых электролитических конденсаторов (C202, C206, C207) на выходе блока питания. В таком случае лучше поменять сразу все конденсаторы, всего шесть штук. Стоимость этих деталей копеечная, поэтому не стоит ждать, когда они тоже вспучатся. После такой замены монитор заработал. Кстати, такая неисправность у мониторов LG достаточно частая.

Вспученные конденсаторы вызывали срабатывание схемы защиты, о работе которой будет рассказано чуть позже. Если после замены конденсаторов блок питания не заработал, придется искать другие причины. Для этого рассмотрим схему более подробно.

Рис 5. Блок питания монитора LG_flatron_L1919s (для увеличения нажмите на рисунок)

Сетевой фильтр и выпрямитель

Сетевое напряжение через входной разъем SC101, предохранитель F101, фильтр LF101 поступает на выпрямительный мост BD101. Выпрямленное напряжение через термистор TH101 поступает на сглаживающий конденсатор C101. На этом конденсаторе получается постоянное напряжение 310В, которое поступает на инвертор.

Если это напряжение отсутствует или намного меньше указанной величины, то следует проверить сетевой предохранитель F101, фильтр LF101, выпрямительный мост BD101, конденсатор C101, и термистор TH101. Все указанные детали легко проверить с помощью мультиметра. Если возникает подозрение на конденсатор C101, то лучше поменять его на заведомо исправный.

Кстати, сетевой предохранитель просто так не сгорает. В большинстве случаев его замена не приводит к восстановлению нормальной работы импульсного блока питания. Поэтому следует искать другие причины, приводящие к перегоранию предохранителя.

Предохранитель следует ставить на тот же ток, который указан на схеме, и ни в коем случае не «умощнять» предохранитель. Это может привести к еще более серьезным неисправностя.

Инвертор

Инвертор выполнен по однотактной схеме. В качестве задающего генератора используется микросхема ШИМ-контроллера U101 к выходу которой подключен силовой транзистор Q101. К стоку этого транзистора через дроссель FB101 подключена первичная обмотка трансформатора T101 (выводы 3-5).

Дополнительная обмотка 1-2 с выпрямителем R111, D102, C103 используется для питания ШИМ контроллера U101 в установившемся режиме работы блока питания. Запуск ШИМ контроллера при включении производится резистором R108.

Выходные напряжения

Блок питания вырабатывает два напряжения: 12В/2А для питания инвертора ламп подсветки и 5В/2А для питания логической части монитора.

От обмотки 10-7 трансформатора T101 через диодную сборку D202 и фильтр C204, L202, C205 получается напряжение 5В/2А.

Последовательно с обмоткой 10-7 соединена обмотка 8-6, от которой с помощью диодной сборки D201 и фильтра C203, L201, C202, C206, C207 получается постоянное напряжение 12В/2А.

Защита от перегрузок

В исток транзистора Q101 включен резистор R109. Это датчик тока, который через резистор R104 подключен к выводу 2 микросхемы U101.

При перегрузке на выходе ток через транзистор Q101 увеличивается, что приводит к падению напряжения на резисторе R109, которое через резистор R104 подается на вывод 2CS/FB микросхемы U101 и контроллер перестает вырабатывать управляющие импульсы (вывод 6OUT). Поэтому напряжения на выходе блока питания пропадают.

Именно эта защита и срабатывала при вспученных электролитических конденсаторах, о которых было упомянуто выше.

Уровень срабатывания защиты 0,9В. Этот уровень задается источником образцового напряжения внутри микросхемы. Параллельно резистору R109 подключен стабилитрон ZD101 с напряжением стабилизации 3,3В, что обеспечивает защиту входа 2CS/FB от повышенного напряжения.

К выводу 2CS/FB через делитель R117, R118, R107 подается напряжение 310В с конденсатора С101, что обеспечивает срабатывание защиты от повышенного напряжения сети. Допустимый диапазон сетевого напряжения, при котором монитор нормально работает находится в диапазоне 90…240В.

Стабилизация выходных напряжений

Выполнена на регулируемом стабилитроне U201 типа A431. Выходное напряжение 12В/2А через делитель R204, R206 (оба резистора с допуском 1%) подается на управляющий вход R стабилитрона U201. Как только выходное напряжение становится равным 12В, стабилитрон открывается и засвечивается светодиод оптрона PC201.

В результате открывается транзистор оптрона, (выводы 4, 3) и напряжение питания контроллера через резистор R102 подается на вывод 2CS/FB. Импульсы на выводе 6OUT пропадают, и напряжение на выходе 12В/2А начинает падать.

Напряжение на управляющем входе R стабилитрона U201 падает ниже опорного напряжения (2,5В), стабилитрон запирается и выключает оптрон PC201. На выходе 6OUT появляются импульсы, напряжение 12В/2А начинает возрастать и цикл стабилизации повторяется снова. Подобным образом цепь стабилизации построена во многих импульсных блоков питания, например, в компьютерных.

Таким образом, получается, что на вход 2CS/FB контроллера с помощью проводного ИЛИ подключены сразу три сигнала: защита от перегрузок, защита от превышения напряжения сети и выход схемы стабилизатора выходных напряжений.

Вот тут как раз уместно вспомнить, как можно проверить работу этой петли стабилизации. Для этого достаточно при ВЫКЛЮЧЕННОМ!!! из сети блоке питания подать на выход 12В/2А напряжение от регулируемого блока питания.

На выход оптрона PC201 зацепиться лучше стрелочным тестером в режиме измерения сопротивлений. Пока напряжение на выходе регулируемого источника ниже 12В, сопротивление на выходе оптрона будет большим.

Теперь будем увеличивать напряжение. Как только напряжение станет больше 12В, стрелка прибора резко упадет в сторону уменьшения сопротивления. Это говорит о том, что стабилитрон U201 и оптопара PC201 исправны. Следовательно, стабилизация выходных напряжений должна работать нормально.

В точности так же можно проверить работу петли стабилизации у компьютерных импульсных блоков питания. Главное разобраться в том, к какому напряжению подключен стабилитрон.

Если все указанные проверки прошли удачно, а блок питания не запускается, то следует проверить транзистор Q101, выпаяв его из платы. При исправном транзисторе виновата, скорей всего, микросхема U101 или ее обвязка. В первую очередь это электролитический конденсатор C105, который лучше всего проверить заменой на заведомо исправный.

Прислал юрий11112222 - Схемотехника блоков питания: ATX-350WP4
Схемотехника блоков питания: ATX-350WP4

В статье предлагается информация о схемных решениях, рекомендации по ремонту, замене деталей-аналогов блока питания ATX-350WP4. К сожалению, точного изготовителя автору установить не удалось, по-видимому, это сборка блока достаточно близкая к оригиналу предположительно Delux ATX-350WP4 (Shenzhen Delux Industry Co., Ltd), внешний вид блока показан на фото.

Общие сведения. Блок питания реализован в формате ATX12V 2.0, адаптирован под отечественного потребителя, поэтому в нем отсутствуют выключатель питания и переключатель вида переменной сети. Выходные разъемы включают:
разъем для подключения к системной плате -основной 24-контактный разъем питания;
4-контактный разъем +12 V (Р4 connector);
разъемы питания съемных носителей;
питание жесткого диска Serial ATA. Предполагается, что основной разъем питания
может быть легко трансформированным в 20-контактный путем отбрасывания 4-контактной группы, что делает его совместимым с материнскими платами старых форматов. Наличие 24-контактного разъема позволяет обеспечить максимальную мощность разъема с использованием стандартных терминалов в 373.2 Вт .
Эксплуатационная информация об источнике питания ATX-350WP4 приведена в табл.

Структурная схема. Набор элементов структурной схемы источника питания ATX-350WP4 характерен для блоков питания импульсного типа . К ним относятся двухзвенный заградительный фильтр сетевых помех, низкочастотный высоковольтный выпрямитель с фильтром, основной и вспомогательный импульсные преобразователи, высокочастотные выпрямители, монитор выходных напряжений, элементы защиты и охлаждения. Особенностью источника питания такого типа является наличие напряжения питающей сети на входном разъеме блока питания, при этом ряд элементов блока находятся под напряжением, присутствует напряжение на некоторых его выходах, в частности, на выходах +5V_SB. Структурная схема источника показана на рис.1.

Работа источника питания. Выпрямленное сетевое напряжение величиной порядка 300 В является питающим для основного и вспомогательного преобразователей. Кроме того, с выходного выпрямителя вспомогательного преобразователя подается напряжение питания на микросхему управления основным преобразователем. В выключенном состоянии (сигнал PS_On имеет высокий уровень) источника питания основной преобразователь находится в «спящем» режиме, в этом случае напряжение на его выходах измерительными приборами не регистрируются. В то же время, вспомогательный преобразователь вырабатывает напряжение питания основного преобразователя и выходное напряжение +5B_SB. Этот источник питания играет роль источника питания дежурного режима.

Включение основного преобразователя в работу происходит по принципу дистанционного включения, в соответствии с которым сигнал Ps_On становится равным нулевому потенциалу (низкий уровень напряжения) при включении компьютера. По этому сигналу монитором выходных напряжений выдается сигнал разрешения на формирование управляющих импульсов ШИМ-контроллера основного преобразователя максимальной длительности. Основной преобразователь выходит из «спящего» режима. С высокочастотных выпрямителей через соответствующие сглаживающие фильтры на выход блока питания поступают напряжения ±12 В, ±5 В и +3,3 В.

С задержкой в 0,1...0,5 с относительно появления сигнала PS_On, но достаточной для окончания переходных процессов в основном преобразователе и формирования питающих напряжений +3,3 В. +5 В, +12 В на выходе блока питания, монитором выходных напряжений формируется сигнал RG. (питание в норме). Сигнал P.G. является информационным, свидетельствующим о нормальной работе блока питания. Он выдается на материнскую плату для начальной установки и запуска процессора. Таким образом, сигнал Ps_On управляет включением блока питания, а сигнал P.G. отвечает за запуск материнской платы, оба сигнала входят в состав 24-контактного разъема.
Основной преобразователь использует импульсный режим, управление преобразователем осуществляется от ШИМ-контроллера. Длительность открытого состояния ключей преобразователя определяет величину напряжения выходных источников, которое может быть стабилизировано в пределах допустимой нагрузки.

Состояние блока питания контролируется монитором выходных напряжений. В случае перегрузки или недозагрузки, монитором формируют сигналы, запрещающие функционирование ШИМ-контроллера основного преобразователя, переводя его в спящий режим.
Аналогичная ситуация возникает в условиях аварийной эксплуатации блока питания, связанной с короткими замыканиями в нагрузке, контроль которых осуществляется специальной схемой контроля. Для облегчения тепловых режимов в блоке питания использовано принудительное охлаждение, основанное на принципе создания отрицательного давления (выброса теплого воздуха).

Принципиальная схема источника питания показана на рис.2.

Сетевой фильтр и низкочастотный выпрямитель используют элементы защиты от сетевых помех, пройдя которые сетевое напряжение выпрямляется схемой выпрямления мостового типа. Защита выходного напряжения от помех в сети переменного тока осуществляется с помощью пары звеньев заградительного фильтра. Первое звено выполнено на отдельной плате, элементами которой являются СХ1, FL1, второе звено составляют элементы основной платы источника питания СХ, CY1, CY2, FL1. Элементы Т, THR1 защищают источник питания от токов короткого замыкания в нагрузке и всплесков напряжения во входной сети.
Мостовой выпрямитель выполнен на диодах В1-В4. Конденсаторы С1, С2 образуют фильтр низкочастотной сети. Резисторы R2, R3 - элементы цепи разряда конденсаторов С1, С2 при выключении питания. Варисторы V3, V4 ограничивают выпрямленное напряжение при бросках сетевого напряжения выше принятых пределов.
Вспомогательный преобразователь подключен непосредственно к выходу сетевого выпрямителя и схематически представляет автоколебательный блокинг-генератор. Активными элементами бло-кинг-генератора являются транзистор Q1 п-каналь-ный полевой транзистор (MOSFET) и трансформатор Т1. Начальный ток затвора транзистора Q1 создается резистором R11R12. В момент подачи питания начинает развиваться блокинг-процесс, и через рабочую обмотку трансформатора Т1 начинает протекать ток. Магнитный поток, создаваемый этим током, наводит ЭДС в обмотке положительной обратной связи. При этом через диод D5, подключенный к этой обмотке, заряжается конденсатор С7, и происходит намагничивание трансформатора. Ток намагничивания и зарядный ток конденсатора С7 приводят к уменьшению тока затвора Q1 и его последующему запиранию. Демпфирование выброса в цепи стока осуществляется элементами R19, С8, D6, надежное запирание транзистора Q1 осуществляется биполярным транзистором Q4.

Основной преобразователь блока питания выполнен по двухтактной полумостовой схеме (рис.3). Силовая часть преобразователя транзисторная - Q2, Q3, обратно включенные диоды D1, D2 обеспечивают защиту транзисторов преобразователя от «сквозных токов». Вторая половина моста образована конденсаторами С1, С2, создающими делитель выпрямленного напряжения. В диагональ этого моста включены первичные обмотки трансформаторов Т2 и ТЗ, первый из них выпрямительный, а второй функционирует в схеме управления и защиты от «чрезмерных» токов в преобразователе. Для исключения возможности несимметричного подмагничивания трансформатора ТЗ, что может иметь место при переходных процессах в преобразователе, применяется разделительный конденсатор СЗ. Режим работы транзисторов задается элементами R5, R8, R7, R9.
Управляющие импульсы на транзисторы преобразователя поступают через согласующий трансформатор Т2. Однако запуск преобразователя происходит в автоколебательном режиме, при открытом транзисторе 03 ток протекает по цепи:
+U(В1...В4) -> Q3(к-э) -> Т2 - T3 -> СЗ -> С2 -> -U(BL..B4) .

В случае открытого транзистора Q2 ток протекает по цепи:
+U(B1...B4) -> С1 -> С3 -> Т3 -> Т2 -> Q2(к-э) -> -U(B1...B4) .

Через переходные конденсаторы С5, С6 и ограничительные резисторы R5, R7 в базу ключевых транзисторов поступают управляющие сигналы, режекторная цепь R4C4 предотвращает проникновение импульсных помех в переменную электрическую сеть. Диод D3 и резистор R6 образуют цепь разряда конденсатора С5, a D4 и R10 -цепь разряда Сб.
При протекании тока через первичную обмотку ТЗ происходит процесс накопления энергии трансформатором, передача этой энергии во вторичные цепи источника питания и заряд конденсаторов С1, С2. Установившийся режим работы преобразователя начнется после того, как суммарное напряжение на конденсаторах С1, С2 достигнет величины +310 В. При этом на микросхеме U3 (выв. 12) появится питание от источника, выполненного на элементах D9, R20, С15, С16.
Управление преобразователем осуществляется каскадом, выполненным на транзисторах Q5, Q6 (рис.3). Нагрузкой каскада являются симметричные полуобмотки трансформатора Т2, в точку соединения которых поступает питающее напряжение +16 В через элементы D9, R23. Режим работы транзисторов Q5 и Q6 задается резисторами R33, R32 соответственно. Управление каскадом осуществляется импульсами микросхемы ШИМ-формирователя U3, поступающими с выводов 8 и 11 на базы транзисторов каскада. Под воздействием управляющих импульсов один из транзисторов, например Q5, открывается, а второй, Q6 соответственно, закрывается. Надежное запирание транзистора осуществляется цепочкой D15D16C17. Так, при протекании тока через открытый транзистор Q5 по цепи:
+ 16В -> D9 -> R23 -> Т2 -> Q5(к-э) -> D15, D16 -> корпус.

В эмиттере этого транзистора формируется падение напряжения +1,6 В. Этой величины достаточно для запирания транзистора Q6. Наличие конденсатора С17 способствует поддержанию запирающего потенциала во время «паузы».
Диоды D13, D14 предназначены для рассеивания магнитной энергии, накопленной полуобмотками трансформатора Т2.
ШИМ-контроллер выполнен на микросхеме AZ7500BP (BCD Semiconductor), работающей в двухтактном режиме . Элементами времязадающей цепи генератора являются конденсатор С28 и резистор R45. Резистор R47 и конденсатор С29 образуют цепь коррекции усилителя ошибки 1 (рис.4) .

Для реализации двухтактного режима работы преобразователя вход управления выходными каскадами (выв. 13) соединен с источником эталонного напряжения (выв. 14). С выводов 8 и 11 микросхемы управляющие импульсы поступают в базовые цепи транзисторов Q5, Q6 каскада управления. Напряжение +16 В подводится на вывод питания микросхемы (выв. 12) от выпрямителя вспомогательного преобразователя.

Режим «медленного пуска» реализован с помощью усилителя ошибки 2, на неинвертирующий вход которого (выв. 16 U3) поступает напряжение питания +16 В через делитель R33R34R36R37C21, а на инвертирующий вход (выв. 15) поступает напряжение от источника опорного (выв. 14) с интегрирующего конденсатора С20 и резистора R39.
На неинвертирующий вход усилителя ошибки 1 (выв. 1 U3) через сумматор R42R43R48 поступает сумма напряжений +12 В и +3,3 В. На противоположный вход усилителя (выв. 2 U3) через делитель R40R49 подается напряжение от эталонного источника микросхемы (выв. 14 U3). Резистор R47 и конденсатор С29 - элементы частотной коррекции усилителя.
Цепи стабилизации и защиты. Длительность выходных импульсов ШИМ-контроллера (выв. 8, 11 U3) в установившемся режиме определяется сигналами обратной связи и пилообразным напряжением задающего генератора. Интервал времени, в течение которого «пила» превышает напряжение обратной связи, определяет длительность выходного импульса. Рассмотрим процесс их формирования.

С выхода усилителя ошибки 1 (выв. 3 U3) информация об отклонении выходных напряжений от номинального значения в виде медленно изменяющегося напряжения поступает на формирователь ШИМ. Далее с выхода усилителя ошибки 1 напряжение поступает на один из входов широт-но-импульсного модулятора (ШИМ). На его второй вход поступает пилообразное напряжение амплитудой +3,2 В. Очевидно, что при отклонении выходных напряжения от номинальных значений, например, в сторону уменьшения будет происходить уменьшение напряжения обратной связи при той величине пилообразного напряжения, поступающее на выв. 1, что приводит к увеличению длительности циклов выходных импульсов. При этом в трансформаторе Т1 накапливается больше электромагнитной энергии, отдаваемой в нагрузку, вследствие чего выходное напряжение повышается до номинального значения.
В аварийном режиме функционирования увеличивается падение напряжения на резисторе R46. При этом увеличивается напряжение на выводе 4 микросхемы U3, а это, в свою очередь, приводит к срабатыванию компаратора «пауза» и последующему уменьшению длительности выходных импульсов и, соответственно, к ограничению протекания тока через транзисторы преобразователя, предотвращая тем самым выход Q1, Q2 из строя.

В источнике также имеются цепи защиты от короткого замыкания в каналах выходного напряжения. Датчик короткого замыкания по каналам -12 В и -5 В образован элементами R73, D29, средняя точка которых соединена с базой транзистора Q10 через резистор R72. Сюда же через резистор R71 поступает напряжение от источника +5 В. Следовательно, наличие короткого замыкания в каналах -12 В (или -5 В) приведет к отпиранию транзистора Q10 и перегрузке по выводу 6 монитора напряжений U4, а это, в свою очередь, прекратит работу преобразователя по выводу 4 преобразователя U3.
Управление, контроль и защита источника питания. Практически всем компьютерам кроме высококачественного выполнения его функций требуется легкое и быстрое включение / выключение. Задача включения / выключения источника питания решается путем реализации в современных компьютерах принципа дистанционного включения / выключения. При нажатии кнопки «I/O», расположенной на передней панели корпуса компьютера, процессорной платой формируется сигнал PS_On. Для включения источника питания сигнал PS_On должен иметь низкий потенциал, т.е. нулевой, при выключении - высокий потенциал.

В источнике питания задачи управления, контроля и защиты реализованы на микросхеме U4 монитора выходных напряжений источника питания LP7510 . При поступлении нулевого потенциала (сигнал PS_On) на вывод 4 микросхемы, на выводе 3 также формируется нулевой потенциал с задержкой на 2,3 мс. Этот сигнал является запускающим для источника питания. Если же сигнал PS_On высокого уровня или же цепь поступления его разорвана, то на выводе 3 микросхемы устанавливается также высокий уровень .
Кроме того, микросхема U4 осуществляет контроль основных выходных напряжений источника питания. Так, выходные напряжения источников питания 3,3 В и 5 В не должны выходить за установленные пределы 2,2 В < 3,3В < 3,9 В и 3,5 В < 5 В < 6,1 В. В случае их выхода за эти пределы более чем на 146 мкс на выходе 3 микросхемы U4 устанавливается высокий уровень напряжения, и источник питания выключается по входу 4 микросхемы U3. Для источника питания +12 В, контролируемого по выводу 7, существует только контроль над его превышением. Напряжение питания этого источника не должно превышать больше чем 14,4 В. В перечисленных аварийных режимах основной преобразователь переходит в спящий режим путем установления на выводе 3 микросхемы U4 напряжения высокого уровня. Таким способом осуществляется контроль и защита блока питания от понижения и повышения напряжения на выходах его основных источников (рис.5).

Во всех случаях высокого уровня напряжения на выводе 3, напряжение на выводе 8 в норме, PG имеет низкий уровень (нулевой). В случае, когда все напряжения питания в норме, на выводе 4 устанавливается низкий уровень сигнала PSOn, а также на выводе 1 присутствует напряжение, не превышающее 1,15 В, на выводе 8 появляется сигнал высокого уровня с задержкой на 300 мс.
Схема терморегулирования предназначена для поддержания температурного режима внутри корпуса блока питания. Схема состоит из вентилятора и термистора THR2, которые подключены к каналу+12 В. Поддержание постоянной температуры внутри корпуса достигается регулированием скорости вращением вентилятора.
Выпрямители импульсного напряжения используют типовую двухполупериодную схему выпрямления со средней точкой, обеспечивающую необходимый коэффициент пульсаций.
Выпрямитель источника питания +5 V_SB выполнен на диоде D12. Двухзвенный фильтр выходного напряжения состоит из конденсатора С15, дросселя L3 и конденсатора С19. Резистор R36 -нагрузочный. Стабилизация этого напряжения осуществляется микросхемами U1, U2.

Источник питания +5 В выполнен на диодной сборке D32. Двухзвенный фильтр выходного напряжения образован обмоткой L6.2 многообмоточного дросселя, дросселя L10, конденсаторами С39, С40. Резистор R69 - нагрузочный.
Аналогично исполнен источник питания +12 В. Его выпрямитель реализован на диодной сборке D31. Двухзвенный фильтр выходного напряжения образован обмоткой L6.3 многообмоточного дросселя, дросселя L9, конденсатора С38. Нагрузка источника питания - схема терморегулирования.
Выпрямитель напряжения +3,3 В - диодная сборка D30. В схеме использован стабилизатор параллельного типа с регулирующим транзистором Q9 и параметрическом стабилизаторе U5. На управляющий вход U5 напряжение поступает с делителя R63R58. Резистор R67 - нагрузка делителя.
Для снижения уровня помех, излучаемых импульсными выпрямителями в электрическую сеть, параллельно вторичным обмоткам трансформатора Т1 включены резистивно-емкостные фильтры на элементах R20, R21, СЮ, С11.
Источники питания отрицательных напряжений -12 В, -5 В формируются аналогично. Так для источника - 12 В выпрямитель выполнен на диодах D24, D25, D26, сглаживающий фильтр L6.4L5C42, резистор R74 - нагрузочный.
Напряжение -5 В формируется с помощью диодов D27, 28. Фильтры этих источников -L6.1L4C41. Резистор R75 - нагрузочный.

Типовые неисправности
Перегорание сетевого предохранителя Т или выходные напряжения отсутствуют. В этом случае необходимо проверить исправность элементов заградительного фильтра и сетевого выпрямителя (В1-В4, THR1, С1, С2, V3, V4, R2, R3), а также проверить исправность транзисторов Q2, Q3. Наиболее часто в случае выбора неправильной сети переменного тока выгорают ва-ристоры V3, V4.
Проверяется также исправность элементов вспомогательного преобразователя, транзисторов Q1.Q4.
Если неисправность не обнаруживается и выход и строя рассмотренных ранее элементов не подтвердился, то проверяется наличие напряжения 310 В на последовательно соединенных конденсаторах С1,C2. При его отсутствии проверяется исправность элементов сетевого выпрямителя.
Напряжение+5\/_ЗВ выше или ниже нормы. Проверить исправность цепи стабилизации U1, U2, неисправный элемент заменяется. В качестве элемента замены U2 можно использовать TL431, КА431.
Выходные напряжения питания выше или ниже нормы. Проверяем исправность цепи обратных связей - микросхемы U3, элементов обвязки микросхемы U3: конденсаторов С21, С22, С16. В случае исправности перечисленных выше элементов заменить U3. В качестве аналогов U3 можно использовать микросхемы TL494, КА7500В, МВ3759.
Отсутствует сигнал P.G. Следует проверить наличие сигнала Ps_On, наличие питающих напряжений +12 В, +5 В, +3,3 В, +5 B_SB. В случае их наличия заменить микросхему U4. В качестве аналога LP7510 можно использовать TPS3510.
Отсутствует дистанционное включение источника питания. Проверить наличие на контакте PS-ON потенциала корпуса (нуля), исправность микросхемы U4 и элементов ее обвязки. В случае исправности элементов обвязки заменить U4.
Отсутствие вращения вентилятора. Убедиться в работоспособности вентилятора, проверить элементы цепи его включения: наличие +12 В, исправность терморезистора THR2.

Д. Кучеров, Журнал Радиоаматор, №3, 5 2011г

ДОБАВЛЕНО 07/10/2012 04:08

От себя добавлю:
Сегодня пришлось себе делать БП на замену опять сгоревшего (думаю не скоро я его отремонтирую) Chieftec 1KWt. Был у меня 500вт Topower silent.

В принципе неплохой европейский БП, с честной мощностью. Проблема - срабатывает защита. Т.е. при нормальной дежурке только кратковременный старт. Дёрг вентилем и усё.
КЗ по основным шинам не обнаружил, начал исследовать - чудес то не бывает. И наконец нашёл то что искал - шину -12в. Банальный дефект - пробитый диод, даже не стал рассматривать какой. Просто заменил на HER207.
Установил сей БП себе в систему - полёт нормальный.

Работоспособность персонального компьютера (ПК) не в последнюю очередь зависит от качества работы блока питания (БП). В случае его выхода из строя устройство не сможет включиться, а значит, придётся провести замену или ремонт блока питания компьютера. Будь то современный игровой или слабый офисный компьютер, работают все БП по сходному принципу , и методика поиска неисправностей для них одинакова.

Принцип работы и основные узлы

Перед тем как взяться за ремонт БП, необходимо понимать, каким образом он работает, знать его основные узлы. Ремонт блоков питания следует осуществлять предельно осторожно и помнить про электробезопасность во время работы. К основным узлам БП относят:

  • входной (сетевой) фильтр;
  • дополнительный формирователь стабилизированного сигнала 5 вольт;
  • главный формирователь +3,3 В, +5 В, +12 В, а также -5 В и -12В;
  • стабилизатор напряжения линии +3,3 вольта;
  • выпрямитель высокочастотный;
  • фильтры линий формирования напряжений;
  • узел контроля и защиты;
  • блок наличия сигнала PS_ON от компьютера;
  • формирователь напряжения PW_OK.

Фильтр, стоящий на входе, используется для подавления помех , генерирующихся БП в электрическую цепь. Одновременно с этим он выполняет защитную функцию при нештатных режимах работы БП: защита от превышения значения тока, защита от всплесков напряжения.

При включении БП в сеть на 220 вольт на материнскую плату через дополнительный формирователь поступает стабилизированный сигнал с величиной равной 5 вольт. Работа основного формирователя в этот момент блокируется сигналом PS_ON, сформированным материнской платой и равным 3 вольта.

После нажатия кнопки включения на ПК, значение PS_ON становится равным нулю и происходит запуск основного преобразователя . Источник питания начинает вырабатывать основные сигналы, поступающие на компьютерную плату и схемы защиты. В случае значительного превышения уровня напряжения схема защиты прерывает работу основного формирователя.

Для запуска материнской платы на неё одновременно, с прибора питания, подаётся напряжение +3,3 вольта и +5 вольт для формирования уровня PW_OK, что обозначает питание в норме . Каждый цвет провода в устройстве питания соответствует своему уровню напряжения:

  • чёрный, общий провод;
  • белый, -5 вольт;
  • синий, -12 вольт;
  • жёлтый, +12 вольт;
  • красный, +5 вольт;
  • оранжевый, +3,3 вольта;
  • зелёный, сигнал PS_ON;
  • серый, сигнал PW_OK;
  • фиолетовый, дежурное питание.

Устройство питания в основе своей работы использует принцип широтно-импульсной модуляции (ШИМ). Сетевое напряжение, преобразованное диодным мостом, поступает на силовой блок. Его величина составляет 300 вольт. Работой транзисторов в силовом блоке управляет специализированная микросхема ШИМ контроллер. При поступлении сигнала на транзистор происходит его открывание, и на первичной обмотке импульсного трансформатора возникает ток. В результате электромагнитной индукции проявляется напряжение и на вторичной обмотке. Изменяя длительность импульса, регулируется время открытия ключевого транзистора, а значит и величина сигнала.

Контроллер, входящий в состав основного преобразователя, запускается от разрешающего сигнала материнской платы. Напряжение попадает на силовой трансформатор, а с его вторичных обмоток поступает на остальные узлы источника питания, формирующих ряд необходимых напряжений.

ШИМ контроллер обеспечивает стабилизацию выходного напряжения путём использования в схеме обратной связи. При увеличении уровня сигнала на вторичной обмотке, схема обратной связи уменьшает величину напряжения на управляющем выводе микросхемы. При этом микросхемой увеличивает длительность сигнала, посылаемого на транзисторный ключ.

Перед тем, как перейти непосредственно к диагностике компьютерного прибора питания, нужно убедиться, что неполадка именно в нём. Проще всего, это сделать, подключив заведомо исправный блок к системному блоку. Поиск неисправностей в блоке питания компьютера можно осуществлять по следующей методике:

  1. В случае повреждения БП необходимо попытаться найти пособие по его ремонту, принципиальную электрическую схему, данные о типичных неисправностях.
  2. Проанализировать условия, при каких условиях работал источник питания, исправна ли электрическая сеть.
  3. Используя свои органы чувств определить есть ли запах горевших деталей и элементов, не было ли искрения или вспышки, прислушаться слышны ли посторонние звуки.
  4. Предположить одну неисправность, выделить неисправный элемент. Обычно это самый трудоёмкий и кропотливый процесс. Этот процесс ещё более трудоёмкий, если отсутствует электрическая схема, которая просто необходима при поиске «плавающих» неисправностей. Используя измерительные приборы проследить путь прохождение сигнала неисправности до того элемента, на котором имеется рабочий сигнал. В результате сделать вывод, что сигнал пропадает на предыдущем элементе, который и является нерабочим и требует замены.
  5. После ремонта необходимо протестировать источник питания с максимально возможной его нагрузкой.

Если принято решение самостоятельно починить источник питания, в первую очередь он извлекается из корпуса системного блока. После выкручиваются крепёжные винты и снимается защитный кожух. Продув и почистив от пыли, приступают к его изучению. Практический ремонт блока питания компьютера своими руками пошагово можно представить следующим образом:

  1. Внешний осмотр. При нём особое внимание уделяется почерневшим местам на плате и элементах, внешнему виду конденсаторов. Верхушка конденсаторов должна быть плоской, выпуклость говорит о его негодности, внизу у основания не должно быть подтёков. Если имеется кнопка включения, не лишним будет провести её проверку.
  2. Если осмотр не вызвал подозрений, то следующим шагом будет прозвонка входных и выходных цепей на присутствие короткого замыкания (КЗ). При присутствии короткого замыкания выявляется пробитый полупроводниковый элемент, стоящий в цепи с КЗ.
  3. Измеряется сетевое напряжение на конденсаторе выпрямительного блока и проверяется предохранитель. В случае наличия напряжения 300 B переходим к следующему этапу.
  4. Если напряжение отсутствует, при этом сгорает предохранитель, проверяется диодный мост, ключевые транзисторы на короткое замыкание. Резисторы и защитный терморезистор на обрыв.
  5. Проверяется присутствие дежурного напряжения, стабилизированных пяти вольт. Статистика свидетельствует, что когда устройство питания не включается, одна из наиболее распространённых причин, это неисправность схемы дежурного питания, при работоспособных силовых элементах.
  6. Если стабилизированные пять вольт присутствуют, проверяется наличие PS_ON. Когда значение менее четырёх вольт, ищется причина занижения уровня сигнала. Обычно PS_ON формируется от дежурного напряжения через подтягивающий резистор номиналом 1 кОм. Проверяется цепь супервизора, прежде всего на соответствие в цепи значений ёмкости конденсаторов и номиналы резисторов.

В случае, если причина не найдена, проверяется ШИМ контроллер. Для этого понадобится стабилизированный прибор питания на 12 вольт. На плате отключается нога микросхемы , отвечающая за задержку (DTC), а питание источника подаётся на ногу VCC. Осциллографом смотрится наличие генерации сигнала на выводах, подключённых к коллекторам транзисторов, и присутствие опорного напряжения. Если импульсы отсутствуют проверяется промежуточный каскад, собранный чаще всего на маломощных биполярных транзисторах.

Типовые неисправности и проверка элементов

При восстановлении блока питания ПК понадобится использовать различного рода приборы в первую очередь, это мультиметр и желательно осциллограф. С помощью тестера возможно провести измерения на короткое замыкание или обрыв как пассивных, так и активных радиоэлементов. Работоспособность микросхемы, если отсутствуют визуальные признаки выхода её из строя, проверяется с использованием осциллографа. Кроме, измерительной техники для ремонта блока питания ПК, потребуется: паяльник, отсос для припоя, промывочный спирт, вата, олово и канифоль.

Если не запускается блок питания компьютера, возможные неисправности можно представить в виде типичных случаев:

  1. Перегорает предохранитель в первичной цепи. Пробиты диоды в выпрямительном мосту. Звонятся на короткое замыкание элементы разделительного фильтра: B1-B4, C1, C2, R1, R2. Обрыв варисторов и терморезистора TR1, звонятся накоротко переходы силовых транзисторов и вспомогательных Q1-Q4.
  2. Постоянное напряжение пять вольт или три вольта занижены или завышены. Нарушения в работе стабилизирующей цепи, проверяются микросхемы U1, U2. Если проверить ШИМ контроллер не удаётся, то проводится замена микросхемы на идентичную или аналог.
  3. Уровень сигнала на выходе отличается от рабочего. Неисправность в цепи обратной связи. Виновата микросхема ШИМ и радиоэлементы в её обвязке, особое внимание уделяется конденсаторам C и маломощным резисторам R.
  4. Нет сигнала PW_OK. Проверяется присутствие напряжений основных напряжений и сигнала PS_ON. Проводится замена супервизора, отвечающего за контроль выходного сигнала.
  5. Отсутствует сигнал PS_ON. Сгорела микросхема супервизора, элементы обвязки её цепи. Проверить путём замены микросхемы.
  6. Не крутит вентилятор. Замерить напряжение, поступающее на него, оно составляет 12 вольт. Прозвонить терморезистор THR2. Замерить сопротивление выводов вентилятора на отсутствие короткого замыкания. Провести механическую чистку и смазать посадочное место под лопасти вентилятора.

Принципы измерения радиоэлементов

Корпус БП соединён с общим проводом печатной платы. Измерение силовой части источника питания проводится относительно общего провода . Предел на мультиметре выставляется более 300 вольт. Во вторичной части присутствует только постоянное напряжение, не превышающее 25 вольт.

Проверка резисторов осуществляется путём сравнений показаний тестера и маркировки, нанесённой на корпус сопротивления или указанной на схеме. Проверка диодов проводится тестером, если он показывает нулевое сопротивление в оба направления, то делается вывод о его неисправности. Если существует возможность в приборе проверить падение напряжения на диоде, то можно его не выпаивать, величина составляет 0,5−0,7 вольта.

Проверка конденсаторов происходит путём измерения их ёмкости и внутреннего сопротивления, для чего необходим специализированный прибор ESR-метр. При замене следует учитывать, что используются конденсаторы с низким внутренним сопротивлением (ESR). Транзисторы прозванивают на работоспособность p-n переходов или в случае полевых на способность открываться и закрываться.

Проверка отремонтированного источника питания

После того, как АТХ блок отремонтирован, важно правильно провести его первое включение. При этом, если были устранены не все неполадки, возможен выход из строя отремонтированных и новых узлов прибора.

Запуск устройства питания можно осуществить автономно, без использования компьютерного блока. Для этого перемыкается контакт PS_ON с общим проводом. Перед включением на место предохранителя впаивается лампочка 60 Вт, а предохранитель удаляется. Если при включении лампочка начинает ярко светить, то в блоке присутствует короткое замыкание. В случае когда лампа вспыхнет и погаснет, лампу можно выпаивать и устанавливать предохранитель.

Следующий этап проверки БП происходит под нагрузкой. Сначала проверяется наличие дежурного напряжения для этого выход нагружается нагрузкой порядка двух ампер. Если дежурка в порядке, блок питания включается замыканием PS_ON, после чего делаются замеры уровней выходных сигналов. Если есть осциллограф - смотрится пульсация.